Skip to main content

Advanced NLU settings

When editing project settings, you can configure NLU. Settings are passed as a JSON object.

Common settings

Common settings include parameters that do not depend on the algorithm of the classifier in the project:

{
"patternsEnabled": true,
"tokenizerEngine": "udpipe",
"dictionaryAutogeneration": true
}
  • patternsEnabled — if the parameter is active, you can use patterns in training phrases.
  • tokenizerEngine — the tokenizer that will tokenize and lemmatize the text.
  • dictionaryAutogeneration — when the parameter is active, the entity content will fill the user dictionary.

tokenizerEngine

Different tokenizer engines are supported for different NLU languages.

NLU languageTokenizersNotes
Russianudpipe
mystem
morphsrus
The mystem and morphsrus tokenizers are used for migrating projects to CAILA.
Chinesepinyin
Portugueseudpipe
Kazakhkaznlp
Any other languagespacy

STS

STS classifier default settings:

{
"allowedPatterns": [],

"stsSettings": {
"exactMatch": 1.0,
"lemmaMatch": 0.95,
"jaccardMatch": 0.5,
"jaccardMatchThreshold": 0.82,
"acronymMatch": 1.0,
"synonymMatch": 0.5,
"synonymContextWeight": 0.0,
"patternMatch": 1,
"throughPatternMatch": 0.8,
"wordSequence1": 0.8,
"wordSequence2": 0.9,
"wordSequence3": 1.0,
"idfShift": 0.0,
"idfMultiplier": 1.0,
"namedEntitiesRequired": false
}
}
  • allowedPatterns — the list of entities that have the Automatically expand intents setting enabled.

  • exactMatch — if the user’s words match words in training phrases, the weight of each word is multiplied by this coefficient. For example, home and home.

  • lemmaMatch — if dictionary forms (lemmas) of the user’s words match the lemmas of words in training phrases, the weight of each word will be multiplied by this coefficient. For example, homes and home.

  • jaccardMatch — when words match on their Jaccard index, the weight of a matching word is multiplied by this coefficient. jaccardMatch is triggered if:

    • The letters in the words are the same, but in a different order. For example, cat and act.
    • The letters in the words are almost the same, but their similarity coefficient is greater than or equal to jaccardMatchThreshold. For example, system and sstem.
  • jaccardMatchThreshold — the minimum value of the Jaccard index. By default, jaccardMatch considers two words to match if their similarity coefficient is greater than or equal to 0.82.

  • acronymMatch — if phrases and their abbreviations match, the phrase weight is multiplied by this coefficient. Abbreviations are determined by regular expressions. For example, University College London and UCL.

  • synonymMatch — if synonyms match, the word weight is multiplied by this coefficient. A ready-to-use synonym dictionary is built into CAILA. It is supported only for the Russian language.

  • synonymContextWeight — the weight of the synonym is penalized by this coefficient:

    • If "synonymContextWeight": 0.0, the synonym weight is not reduced.
    • If "synonymContextWeight": 1.0, the synonym weight is significantly reduced.
  • patternMatch — if a word matches an entity specified in a training phrase, the word weight is multiplied by this coefficient.

    For example, let’s take an intent that contains a phrase Call @agent. The @agent entity contains the synonyms agent, specialist, and consultant. If the user asks the bot to call @agent, the word consultant is recognized as an entity, and its weight is multiplied by the patternMatch value.

  • throughPatternMatch — if a word matches an entity specified in allowedPatterns, the weight of the word is multiplied by this coefficient.

  • If there is a matching sequence of words in the phrase, the word weight is multiplied by one of these coefficients:

    • The weight of the first word in the sequence is multiplied by wordSequence1.
    • The weight of the second word in the sequence is multiplied by wordSequence2.
    • The weight of the third word in the sequence is multiplied by wordSequence3. The fourth and subsequent words will also be multiplied by wordSequence3. It is recommended to specify a parameter value between 0 (not included) and 1 (included). Keep the ratio of wordSequence1 < wordSequence2 < wordSequence3.

    For example, there is a training phrase I want to buy a course at a good price in the intent. The user writes to the bot I have decided to buy your course at a good price. The algorithm finds matching sequences:

    SequenceWordWord weight multiplier
    IIwordSequence1
    totowordSequence1
    to buybuywordSequence2
    coursecoursewordSequence1
    course atatwordSequence2
    course at aawordSequence3
    course at a goodgoodwordSequence3
    course at a good pricepricewordSequence3
  • idfShift and idfMultiplier — parameters that affect the word weight calculation via IDF. It is not recommended to change their values.

  • namedEntitiesRequired — if this parameter is active, a system entity should be found in the user’s request for it activate the corresponding intent.

    For example, a phrase with a system entity I need @duckling.number of apples is added to the intent. If this parameter is active, the user’s request I need apples will not activate the intent, because it contains no system entity.

Classic ML

Classic ML classifier settings:

{
"classicMLSettings": {
"C": 1,
"lang": "en",
"word_ngrams": [
1,
2
],
"lemma_ngrams": [
0
],
"stemma_ngrams": [
1,
2
],
"char_ngrams": [
3,
4
],
"lower": true,
"useTfIdf": true
}
}
  • C — the regularization coefficient that can be used to control model overfitting. Use it to control larger values of the target function coefficients and to penalize them by the value of the parameter. It can take the following values: 0.01, 0.1, 1, 10.

  • word_ngrams — the number of words to be combined into word combinations. For "word_ngrams": [2, 3] combinations of two and three words will be used. For instance, the following word combinations will be generated for I like green apples:

    • I like,
    • like green,
    • green apples,
    • I like green,
    • like green apples.
    caution
    Values greater than 3 are not recommended for this parameter.
  • lemma_n_grams — the number of words to be normalized and combined into word combinations. For "lemma_n_grams": [2] combinations of two words will be used. For instance, the following word combinations will be generated for I like green apples:

    • I like,
    • like green,
    • green apple.
    caution
    Values greater than 3 are not recommended for this parameter.
  • stemma_ngrams — the number of stems to be combined into word combinations. A stem is not necessarily equal to the morphological root of the word. For "stemma_ngrams": [2] combinations of two stems will be used. For instance, the following word combinations will be generated for I like green apples:

    • I like,
    • like green,
    • green apple.
    caution
    Using both lemma_n_grams and stemma_ngrams parameters is not recommended due to possible model overfitting. Setting the value of stemma_ngrams to be greater than 3 is not recommended either.
  • char_n_grams — the number of symbols to be combined and treated as a single unit of a phrase. For instance, for "char_n_grams": [3] the phrase green apples is converted to the following set:

    • gre,
    • ree,
    • een etc.
  • lower — if set to true, all the phrases are converted to lowercase.

  • useTfIdf — the parameter determines which algorithm to use when vectorizing training phrases. The default value is false.

    • If true, TF-IDF is used. It calculates the significance of a word or expression in the context of all training phrases. Use it on projects with a small dataset to improve the quality of intent recognition. The vectorization will be slower than when false is set, but its quality will be higher.
    • If false, CountVectorizer is used. It calculates how often words or expressions are present in the intent. Use it on projects with a medium or large dataset. The vectorization will be faster, but the algorithm accuracy will decrease when working with a small dataset.
  • min_document_frequency — the minimum word frequency with which it can occur in training phrases, so that it can be vectorized and classified. The default value is 1.

    • If you work with a medium or large dataset, increase the parameter value to speed up classifier training. Rare words in the dataset will not be taken into account.
    • If you work with a small dataset, it is not recommended to change the default value.

Deep Learning

Deep Learning classifier settings:

{
"cnnSettings": {
"lang": "en",
"kernel_sizes": [
1,
2
],
"n_filters": 1024,
"emb_drp": 0.25,
"cnn_drp": 0.25,
"bs": 64,
"n_epochs": 15,
"lr": 0.001,
"pooling_name": "max"
}
}
  • kernel_sizes — the list of convolution kernel sizes. A convolution kernel is the size of the context window to be taken into account by the classifier. For instance, "kernel_sizes": [3] means that the model will use all the triplets of adjacent words to find features in the text. Multiple convolution kernels can be defined for a single model.

  • n_filters — the number of filters. A filter is a specific pattern learned by the model. A model has a unique set of patterns for each kernel. For instance, if you specify "kernel_sizes": [2, 3] and "n_filters": 512, the total number of filters will be 1024 (512 per kernel).

  • emb_drp — the probability of the drop-out on the embedding layer. Drop-out is a mechanism that forcibly disables some of the weights in the network in the course of training. Drop-out prevents the network from overfitting, it helps to summarize the information instead of merely memorizing the entire dataset. It can take any value from 0 to 1.

  • cnn_drp — the probability of the drop-out on the convolution layers of the network.

  • bs — the size of the input batch for training. This value defines the number of training examples per step to be fed to the network in the course of training. If the dataset has less than 3,000 examples, a value from 16 to 32 is recommended. For larger datasets, this value can be from 32 to 128.

  • n_epochs — the number of learning epochs, i.e. the number of times the model will see all the training data.

  • lr — the learning rate. The factor the model will use to update its weights in the course of training.

  • pooling_name — the aggregation strategy. The model has to aggregate the patterns found in the input string before the final classification layer. The following aggregation strategies are possible: max, mean, concat.

Deep Learning classifier settings:

ParameterDataset size
1 to 3 thousand examples3 to 10 thousand examples10 to 30 thousand examples30 to 100 thousand examplesOver 100 thousand examples
kernel_sizes[2, 3][2, 3] or [2, 3, 4][2, 3] or [2, 3, 4][2, 3, 4][2, 3, 4]
n_filters512102410241024–20481024–2048
emb_drp0.50.4–0.50.3–0.50.3–0.40.3–0.4
cnn_drp0.50.4–0.50.3–0.50.3–0.40.3–0.4
bs16–323232–6432–12864–128
n_epochs7–154–73–533
lr0.0010.0010.0010.0010.001
pooling_name"max""max""max""max" or "concat""max" or "concat"

External NLU service

The JAICP allows to connect an external NLU service using the Model API. You can use third-party services to recognize entities and intents in JAICP projects.

To use an external NLU service in a project, use externalNluSettings in the Advanced NLU settings field:

{
"externalNluSettings": {
"nluProviderSettings": {
"markup": {
"nluType": "external",
"url": "http://example.com"
},
"ner": {
"nluType": "external",
"url": "http://example.com"
},
"classification": {
"nluType": "external",
"url": "http://example.com"
}
},
"language": "ja",
"nluActionAdditionalProperties": {
"markup": null,
"ner": null,
"classification": {
"modelId": "123",
"classifierName": "example",
"properties": null
}
}
}
}
  • nluProviderSettings — the object that determines where the NLU action is going to be performed.

  • markup — the map of parameters for markup requests.

  • nluType — the NLU type. You can set either external or internal NLU type.

  • ner — the parameters of named entity recognition.

  • classification — the map of parameters for classification requests.

  • language — the external NLU language parameter. If not set, language from the project settings will be used.

  • nluActionAdditionalProperties — additional NLU service properties.

  • modelID — the classifier model ID.

  • classifierName — the classifier name.

How to use

caution
You cannot use both CAILA and external NLU service intents or entities at the same time in a project.

In the JAICP project you can:

  1. Use entities and intents from the external NLU service.

    • Set the nluType to external for the markup, ner and classification parameters.
    • Intents are available in the script using the intent tag. Entities are available in the script using the q tag.
    • Visual customization in the CAILA section for the external NLU service intents and entities is not supported.
  2. Use CAILA intents and entities from the external NLU service.

    • Set the nluType to external for the ner parameter and to internal for the markup and classification parameters.
    • The use of entities from the external NLU service isn’t available while setting up the intents and slot filling.
    • Entities are available in the script using the q tag.
  3. Use CAILA entities and intents from the external NLU service.

    • Set the nluType to external for the classification parameter and to internal for the markup and ner parameters.
    • Intents are available in the script using the q tag.
  4. Use external NLU service markup with CAILA intents and entities.

    • Set the nluType: to external for the markup parameter and to internal for the classification and ner.
    • In the CAILA > Intents section, you can use Training phrases in languages that are not supported by JAICP, but these phrases will be recognized in the script.
tip
You can look through an example of an external NLU service in the GitHub repository.